Source code for pyod.models.auto_encoder_torch

# -*- coding: utf-8 -*-
"""Using AutoEncoder with Outlier Detection (PyTorch)
"""
# Author: Yue Zhao <zhaoy@cmu.edu>
# License: BSD 2 clause

from __future__ import division
from __future__ import print_function

import numpy as np
import torch
from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted
from torch import nn

from .base import BaseDetector
from ..utils.stat_models import pairwise_distances_no_broadcast
from ..utils.torch_utility import get_activation_by_name


[docs] class PyODDataset(torch.utils.data.Dataset): """PyOD Dataset class for PyTorch Dataloader """ def __init__(self, X, y=None, mean=None, std=None): super(PyODDataset, self).__init__() self.X = X self.mean = mean self.std = std def __len__(self): return self.X.shape[0] def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() sample = self.X[idx, :] if self.mean is not None and self.std is not None: sample = (sample - self.mean) / self.std # assert_almost_equal (0, sample.mean(), decimal=1) return torch.from_numpy(sample), idx
[docs] class InnerAutoencoder(nn.Module): def __init__(self, n_features, hidden_neurons=(128, 64), dropout_rate=0.2, batch_norm=True, hidden_activation='relu'): # initialize the super class super(InnerAutoencoder, self).__init__() # save the default values self.n_features = n_features self.dropout_rate = dropout_rate self.batch_norm = batch_norm self.hidden_activation = hidden_activation # create the dimensions for the input and hidden layers self.layers_neurons_encoder_ = [self.n_features, *hidden_neurons] self.layers_neurons_decoder_ = self.layers_neurons_encoder_[::-1] # get the object for the activations functions self.activation = get_activation_by_name(hidden_activation) # initialize encoder and decoder as a sequential self.encoder = nn.Sequential() self.decoder = nn.Sequential() # fill the encoder sequential with hidden layers for idx, layer in enumerate(self.layers_neurons_encoder_[:-1]): # create a linear layer of neurons self.encoder.add_module( "linear" + str(idx), torch.nn.Linear(layer,self.layers_neurons_encoder_[idx + 1])) # add a batch norm per layer if wanted (leave out first layer) if batch_norm: self.encoder.add_module("batch_norm" + str(idx), nn.BatchNorm1d( self.layers_neurons_encoder_[ idx + 1])) # create the activation self.encoder.add_module(self.hidden_activation + str(idx), self.activation) # create a dropout layer self.encoder.add_module("dropout" + str(idx), torch.nn.Dropout(dropout_rate)) # fill the decoder layer for idx, layer in enumerate(self.layers_neurons_decoder_[:-1]): # create a linear layer of neurons self.decoder.add_module( "linear" + str(idx), torch.nn.Linear(layer,self.layers_neurons_decoder_[idx + 1])) # create a batch norm per layer if wanted (only if it is not the # last layer) if batch_norm and idx < len(self.layers_neurons_decoder_[:-1]) - 1: self.decoder.add_module("batch_norm" + str(idx), nn.BatchNorm1d( self.layers_neurons_decoder_[ idx + 1])) # create the activation self.decoder.add_module(self.hidden_activation + str(idx), self.activation) # create a dropout layer (only if it is not the last layer) if idx < len(self.layers_neurons_decoder_[:-1]) - 1: self.decoder.add_module("dropout" + str(idx), torch.nn.Dropout(dropout_rate))
[docs] def forward(self, x): # we could return the latent representation here after the encoder # as the latent representation x = self.encoder(x) x = self.decoder(x) return x
[docs] class AutoEncoder(BaseDetector): """Auto Encoder (AE) is a type of neural networks for learning useful data representations in an unsupervised manner. Similar to PCA, AE could be used to detect outlying objects in the data by calculating the reconstruction errors. See :cite:`aggarwal2015outlier` Chapter 3 for details. Notes ----- This is the PyTorch version of AutoEncoder. See auto_encoder.py for the TensorFlow version. The documentation is not finished! Parameters ---------- hidden_neurons : list, optional (default=[64, 32]) The number of neurons per hidden layers. So the network has the structure as [n_features, 64, 32, 32, 64, n_features] hidden_activation : str, optional (default='relu') Activation function to use for hidden layers. All hidden layers are forced to use the same type of activation. See https://pytorch.org/docs/stable/nn.html for details. Currently only 'relu': nn.ReLU() 'sigmoid': nn.Sigmoid() 'tanh': nn.Tanh() are supported. See pyod/utils/torch_utility.py for details. batch_norm : boolean, optional (default=True) Whether to apply Batch Normalization, See https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html learning_rate : float, optional (default=1e-3) Learning rate for the optimizer. This learning_rate is given to an Adam optimizer (torch.optim.Adam). See https://pytorch.org/docs/stable/generated/torch.optim.Adam.html epochs : int, optional (default=100) Number of epochs to train the model. batch_size : int, optional (default=32) Number of samples per gradient update. dropout_rate : float in (0., 1), optional (default=0.2) The dropout to be used across all layers. weight_decay : float, optional (default=1e-5) The weight decay for Adam optimizer. See https://pytorch.org/docs/stable/generated/torch.optim.Adam.html preprocessing : bool, optional (default=True) If True, apply standardization on the data. loss_fn : obj, optional (default=torch.nn.MSELoss) Optimizer instance which implements torch.nn._Loss. One of https://pytorch.org/docs/stable/nn.html#loss-functions or a custom loss. Custom losses are currently unstable. verbose : int, optional (default=1) Verbosity mode. - 0 = silent - 1 = progress bar - 2 = one line per epoch. For verbose >= 1, model summary may be printed. !CURRENTLY NOT SUPPORTED.! random_state : random_state: int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. !CURRENTLY NOT SUPPORTED.! contamination : float in (0., 0.5), optional (default=0.1) The amount of contamination of the data set, i.e. the proportion of outliers in the data set. When fitting this is used to define the threshold on the decision function. Attributes ---------- encoding_dim_ : int The number of neurons in the encoding layer. compression_rate_ : float The ratio between the original feature and the number of neurons in the encoding layer. model_ : Keras Object The underlying AutoEncoder in Keras. history_: Keras Object The AutoEncoder training history. decision_scores_ : numpy array of shape (n_samples,) The outlier scores of the training data. The higher, the more abnormal. Outliers tend to have higher scores. This value is available once the detector is fitted. threshold_ : float The threshold is based on ``contamination``. It is the ``n_samples * contamination`` most abnormal samples in ``decision_scores_``. The threshold is calculated for generating binary outlier labels. labels_ : int, either 0 or 1 The binary labels of the training data. 0 stands for inliers and 1 for outliers/anomalies. It is generated by applying ``threshold_`` on ``decision_scores_``. """ def __init__(self, hidden_neurons=None, hidden_activation='relu', batch_norm=True, learning_rate=1e-3, epochs=100, batch_size=32, dropout_rate=0.2, weight_decay=1e-5, # validation_size=0.1, preprocessing=True, loss_fn=None, # verbose=1, # random_state=None, contamination=0.1, device=None): super(AutoEncoder, self).__init__(contamination=contamination) # save the initialization values self.hidden_neurons = hidden_neurons self.hidden_activation = hidden_activation self.batch_norm = batch_norm self.learning_rate = learning_rate self.epochs = epochs self.batch_size = batch_size self.dropout_rate = dropout_rate self.weight_decay = weight_decay self.preprocessing = preprocessing self.loss_fn = loss_fn # self.verbose = verbose self.device = device # create default loss functions if self.loss_fn is None: self.loss_fn = torch.nn.MSELoss() # create default calculation device (support GPU if available) if self.device is None: self.device = torch.device( "cuda:0" if torch.cuda.is_available() else "cpu") # default values for the amount of hidden neurons if self.hidden_neurons is None: self.hidden_neurons = [64, 32] # noinspection PyUnresolvedReferences
[docs] def fit(self, X, y=None): """Fit detector. y is ignored in unsupervised methods. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Fitted estimator. """ # validate inputs X and y (optional) X = check_array(X) self._set_n_classes(y) n_samples, n_features = X.shape[0], X.shape[1] # conduct standardization if needed if self.preprocessing: self.mean, self.std = np.mean(X, axis=0), np.std(X, axis=0) train_set = PyODDataset(X=X, mean=self.mean, std=self.std) else: train_set = PyODDataset(X=X) train_loader = torch.utils.data.DataLoader(train_set, batch_size=self.batch_size, shuffle=True) # initialize the model self.model = InnerAutoencoder( n_features=n_features, hidden_neurons=self.hidden_neurons, dropout_rate=self.dropout_rate, batch_norm=self.batch_norm, hidden_activation=self.hidden_activation) # move to device and print model information self.model = self.model.to(self.device) print(self.model) # train the autoencoder to find the best one self._train_autoencoder(train_loader) self.model.load_state_dict(self.best_model_dict) self.decision_scores_ = self.decision_function(X) self._process_decision_scores() return self
def _train_autoencoder(self, train_loader): """Internal function to train the autoencoder Parameters ---------- train_loader : torch dataloader Train data. """ optimizer = torch.optim.Adam( self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay) self.best_loss = float('inf') self.best_model_dict = None for epoch in range(self.epochs): overall_loss = [] for data, data_idx in train_loader: data = data.to(self.device).float() loss = self.loss_fn(data, self.model(data)) self.model.zero_grad() loss.backward() optimizer.step() overall_loss.append(loss.item()) print('epoch {epoch}: training loss {train_loss} '.format( epoch=epoch, train_loss=np.mean(overall_loss))) # track the best model so far if np.mean(overall_loss) <= self.best_loss: # print("epoch {ep} is the current best; loss={loss}".format(ep=epoch, loss=np.mean(overall_loss))) self.best_loss = np.mean(overall_loss) self.best_model_dict = self.model.state_dict()
[docs] def decision_function(self, X): """Predict raw anomaly score of X using the fitted detector. The anomaly score of an input sample is computed based on different detector algorithms. For consistency, outliers are assigned with larger anomaly scores. Parameters ---------- X : numpy array of shape (n_samples, n_features) The training input samples. Sparse matrices are accepted only if they are supported by the base estimator. Returns ------- anomaly_scores : numpy array of shape (n_samples,) The anomaly score of the input samples. """ check_is_fitted(self, ['model', 'best_model_dict']) X = check_array(X) # note the shuffle may be true but should be False if self.preprocessing: dataset = PyODDataset(X=X, mean=self.mean, std=self.std) else: dataset = PyODDataset(X=X) dataloader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, shuffle=False) # enable the evaluation mode self.model.eval() # construct the vector for holding the reconstruction error outlier_scores = np.zeros([X.shape[0], ]) with torch.no_grad(): for data, data_idx in dataloader: data_cuda = data.to(self.device).float() # this is the outlier score outlier_scores[data_idx] = pairwise_distances_no_broadcast( data, self.model(data_cuda).cpu().numpy()) return outlier_scores