Source code for pyod.models.anogan

# -*- coding: utf-8 -*-
"""Anomaly Detection with Generative Adversarial Networks  (AnoGAN)
 Paper: https://arxiv.org/pdf/1703.05921.pdf
 Note, that this is another implementation of AnoGAN as the one from https://github.com/fuchami/ANOGAN
"""
# Author: Michiel Bongaerts (but not author of the AnoGAN method)
# License: BSD 2 clause


import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted

from .base import BaseDetector
from .base_dl import _get_tensorflow_version
from ..utils.utility import check_parameter

# if tensorflow 2, import from tf directly
if _get_tensorflow_version() < 200:
    raise NotImplementedError('Model not implemented for Tensorflow version 1')

elif 200 <= _get_tensorflow_version() <= 209:
    import tensorflow as tf
    from tensorflow.keras.models import Model
    from tensorflow.keras.layers import Input, Dense, Dropout
    from tensorflow.keras.optimizers import Adam
else:
    import tensorflow as tf
    from tensorflow.keras.models import Model
    from tensorflow.keras.layers import (Input, Dense, Dropout)
    from tensorflow.keras.optimizers.legacy import Adam


[docs]class AnoGAN(BaseDetector): """Anomaly Detection with Generative Adversarial Networks (AnoGAN). See the original paper "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery". See :cite:`schlegl2017unsupervised` for details. Parameters ---------- output_activation : str, optional (default=None) Activation function to use for output layer. See https://keras.io/activations/ activation_hidden : str, optional (default='tanh') Activation function to use for output layer. See https://keras.io/activations/ epochs : int, optional (default=500) Number of epochs to train the model. batch_size : int, optional (default=32) Number of samples per gradient update. dropout_rate : float in (0., 1), optional (default=0.2) The dropout to be used across all layers. G_layers : list, optional (default=[20,10,3,10,20]) List that indicates the number of nodes per hidden layer for the generator. Thus, [10,10] indicates 2 hidden layers having each 10 nodes. D_layers : list, optional (default=[20,10,5]) List that indicates the number of nodes per hidden layer for the discriminator. Thus, [10,10] indicates 2 hidden layers having each 10 nodes. learning_rate: float in (0., 1), optional (default=0.001) learning rate of training the network index_D_layer_for_recon_error: int, optional (default = 1) This is the index of the hidden layer in the discriminator for which the reconstruction error will be determined between query sample and the sample created from the latent space. learning_rate_query: float in (0., 1), optional (default=0.001) learning rate for the backpropagation steps needed to find a point in the latent space of the generator that approximate the query sample epochs_query: int, optional (default=20) Number of epochs to approximate the query sample in the latent space of the generator preprocessing : bool, optional (default=True) If True, apply standardization on the data. verbose : int, optional (default=1) Verbosity mode. - 0 = silent - 1 = progress bar contamination : float in (0., 0.5), optional (default=0.1) The amount of contamination of the data set, i.e. the proportion of outliers in the data set. When fitting this is used to define the threshold on the decision function. Attributes ---------- decision_scores_ : numpy array of shape (n_samples,) The outlier scores of the training data [0,1]. The higher, the more abnormal. Outliers tend to have higher scores. This value is available once the detector is fitted. threshold_ : float The threshold is based on ``contamination``. It is the ``n_samples * contamination`` most abnormal samples in ``decision_scores_``. The threshold is calculated for generating binary outlier labels. labels_ : int, either 0 or 1 The binary labels of the training data. 0 stands for inliers and 1 for outliers/anomalies. It is generated by applying ``threshold_`` on ``decision_scores_``. """ def __init__(self, activation_hidden='tanh', dropout_rate=0.2, latent_dim_G=2, G_layers=[20, 10, 3, 10, 20], verbose=0, D_layers=[20, 10, 5], index_D_layer_for_recon_error=1, epochs=500, preprocessing=False, learning_rate=0.001, learning_rate_query=0.01, epochs_query=20, batch_size=32, output_activation=None, contamination=0.1): super(AnoGAN, self).__init__(contamination=contamination) self.activation_hidden = activation_hidden self.dropout_rate = dropout_rate self.latent_dim_G = latent_dim_G self.G_layers = G_layers self.D_layers = D_layers self.index_D_layer_for_recon_error = index_D_layer_for_recon_error self.output_activation = output_activation self.contamination = contamination self.epochs = epochs self.learning_rate = learning_rate self.learning_rate_query = learning_rate_query self.epochs_query = epochs_query self.preprocessing = preprocessing self.batch_size = batch_size self.verbose = verbose check_parameter(dropout_rate, 0, 1, param_name='dropout_rate', include_left=True) def _build_model(self): #### Generator ##### G_in = Input(shape=(self.latent_dim_G,), name='I1') G_1 = Dropout(self.dropout_rate, input_shape=(self.n_features_,))(G_in) last_layer = G_1 G_hl_dict = {} for i, l_dim in enumerate(self.G_layers): layer_name = 'hl_{}'.format(i) G_hl_dict[layer_name] = Dropout(self.dropout_rate)( Dense(l_dim, activation=self.activation_hidden)(last_layer)) last_layer = G_hl_dict[layer_name] G_out = Dense(self.n_features_, activation=self.output_activation)( last_layer) self.generator = Model(inputs=(G_in), outputs=[G_out]) self.hist_loss_generator = [] #### Discriminator ##### D_in = Input(shape=(self.n_features_,), name='I1') D_1 = Dropout(self.dropout_rate, input_shape=(self.n_features_,))(D_in) last_layer = D_1 D_hl_dict = {} for i, l_dim in enumerate(self.D_layers): layer_name = 'hl_{}'.format(i) D_hl_dict[layer_name] = Dropout(self.dropout_rate)( Dense(l_dim, activation=self.activation_hidden)(last_layer)) last_layer = D_hl_dict[layer_name] classifier_node = Dense(1, activation='sigmoid')(last_layer) self.discriminator = Model(inputs=(D_in), outputs=[classifier_node, D_hl_dict['hl_{}'.format( self.index_D_layer_for_recon_error)]]) self.hist_loss_discriminator = [] # Set optimizer opt = Adam(learning_rate=self.learning_rate) self.generator.compile(optimizer=opt) self.discriminator.compile(optimizer=opt)
[docs] def plot_learning_curves(self, start_ind=0, window_smoothening=10): # pragma: no cover fig = plt.figure(figsize=(12, 5)) l_gen = pd.Series(self.hist_loss_generator[start_ind:]).rolling( window_smoothening).mean() l_disc = pd.Series(self.hist_loss_discriminator[start_ind:]).rolling( window_smoothening).mean() ax = fig.add_subplot(1, 2, 1) ax.plot(range(len(l_gen)), l_gen, ) ax.set_title('Generator') ax.set_ylabel('Loss') ax.set_xlabel('Iter') ax = fig.add_subplot(1, 2, 2) ax.plot(range(len(l_disc)), l_disc) ax.set_title('Discriminator') ax.set_ylabel('Loss') ax.set_xlabel('Iter') plt.show()
[docs] def train_step(self, data): cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=False) X_original, latent_noise = data with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: X_gen = self.generator({'I1': latent_noise}, training=True) real_output, _ = self.discriminator({'I1': X_original}, training=True) fake_output, _ = self.discriminator({'I1': X_gen}, training=True) # Correctly predicted loss_discriminator = cross_entropy(tf.ones_like(fake_output), fake_output) total_loss_generator = loss_discriminator ## Losses discriminator real_loss = cross_entropy( tf.ones_like(real_output, dtype='float32') * 0.9, real_output) # one-sided label smoothening fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss_discriminator = real_loss + fake_loss # Compute gradients gradients_gen = gen_tape.gradient(total_loss_generator, self.generator.trainable_variables) # Update weights self.generator.optimizer.apply_gradients( zip(gradients_gen, self.generator.trainable_variables)) # Compute gradients gradients_disc = disc_tape.gradient(total_loss_discriminator, self.discriminator.trainable_variables) # Update weights self.discriminator.optimizer.apply_gradients( zip(gradients_disc, self.discriminator.trainable_variables)) self.hist_loss_generator.append( np.float64(total_loss_generator.numpy())) self.hist_loss_discriminator.append( np.float64(total_loss_discriminator.numpy()))
[docs] def fit_query(self, query_sample): assert (query_sample.shape[0] == 1) assert (query_sample.shape[1] == self.n_features_) # Make pseudo input (just zeros) zeros = np.zeros((1, self.latent_dim_G)) # build model for back-propagating a approximate latent space where # reconstruction with query sample is optimal pseudo_in = Input(shape=(self.latent_dim_G,), name='I1') z_gamma = Dense(self.latent_dim_G, activation=None, use_bias=True)( pseudo_in) sample_gen = self.generator({'I1': z_gamma}, training=False) _, sample_disc_latent = self.discriminator({'I1': sample_gen}, training=False) self.query_model = Model(inputs=(pseudo_in), outputs=[z_gamma, sample_gen, sample_disc_latent]) opt = Adam(learning_rate=self.learning_rate_query) self.query_model.compile(optimizer=opt) ############### for i in range(self.epochs_query): if ((i % 25 == 0) and (self.verbose == 1)): print('iter:', i) with tf.GradientTape() as tape: z, sample_gen, sample_disc_latent = self.query_model( {'I1': zeros}, training=True) _, sample_disc_latent_original = self.discriminator( {'I1': query_sample}, training=False) # Reconstruction loss generator abs_err = tf.keras.backend.abs(query_sample - sample_gen) loss_recon_gen = tf.keras.backend.mean( tf.keras.backend.mean(abs_err, axis=-1)) # Reconstruction loss latent space of discrimator abs_err = tf.keras.backend.abs( sample_disc_latent_original - sample_disc_latent) loss_recon_disc = tf.keras.backend.mean( tf.keras.backend.mean(abs_err, axis=-1)) total_loss = loss_recon_gen + loss_recon_disc # equal weighting both terms # Compute gradients gradients = tape.gradient(total_loss, self.query_model.trainable_variables[ 0:2]) # Update weights self.query_model.optimizer.apply_gradients( zip(gradients, self.query_model.trainable_variables[0:2])) return total_loss.numpy()
[docs] def fit(self, X, y=None): """Fit detector. y is ignored in unsupervised methods. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Fitted estimator. """ # validate inputs X and y (optional) X = check_array(X) self._set_n_classes(y) # Verify and construct the hidden units self.n_samples_, self.n_features_ = X.shape[0], X.shape[1] self._build_model() # Standardize data for better performance if self.preprocessing: self.scaler_ = StandardScaler() X_norm = self.scaler_.fit_transform(X) else: X_norm = np.copy(X) for n in range(self.epochs): if ((n % 100 == 0) and (n != 0) and (self.verbose == 1)): print('Train iter:{}'.format(n)) # Shuffle train np.random.shuffle(X_norm) X_train_sel = X_norm[0: min(self.batch_size, self.n_samples_), :] latent_noise = np.random.normal(0, 1, ( X_train_sel.shape[0], self.latent_dim_G)) self.train_step((np.float32(X_train_sel), np.float32(latent_noise))) # Predict on X itself and calculate the reconstruction error as # the outlier scores. Noted X_norm was shuffled has to recreate if self.preprocessing: X_norm = self.scaler_.transform(X) else: X_norm = np.copy(X) scores = [] # For each sample we use a few backpropagation steps, to obtain a point in the latent # space, that best resembles the query sample for i in range(X_norm.shape[0]): if (self.verbose == 1): print('query sample {} / {}'.format(i + 1, X_norm.shape[0])) sample = X_norm[[i],] score = self.fit_query(sample) scores.append(score) self.decision_scores_ = np.array(scores) self._process_decision_scores() return self
[docs] def decision_function(self, X): """Predict raw anomaly score of X using the fitted detector. The anomaly score of an input sample is computed based on different detector algorithms. For consistency, outliers are assigned with larger anomaly scores. Parameters ---------- X : numpy array of shape (n_samples, n_features) The training input samples. Sparse matrices are accepted only if they are supported by the base estimator. Returns ------- anomaly_scores : numpy array of shape (n_samples,) The anomaly score of the input samples. """ check_is_fitted(self, ['decision_scores_']) X = check_array(X) if self.preprocessing: X_norm = self.scaler_.transform(X) else: X_norm = np.copy(X) # Predict on X pred_scores = [] for i in range(X_norm.shape[0]): if (self.verbose == 1): print('query sample {} / {}'.format(i + 1, X_norm.shape[0])) sample = X_norm[[i],] score = self.fit_query(sample) pred_scores.append(score) pred_scores = np.array(pred_scores) return pred_scores