Source code for pyod.models.vae

# -*- coding: utf-8 -*-

"""Variational Auto Encoder (VAE)
and beta-VAE for Unsupervised Outlier Detection

Reference:
        :cite:`kingma2013auto` Kingma, Diederik, Welling
        'Auto-Encodeing Variational Bayes'
        https://arxiv.org/abs/1312.6114
        
        :cite:`burgess2018understanding` Burges et al
        'Understanding disentangling in beta-VAE'
        https://arxiv.org/pdf/1804.03599.pdf
"""

# Author: Andrij Vasylenko <andrij@liverpool.ac.uk>
# License: BSD 2 clause

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted

from .base import BaseDetector
from .base_dl import _get_tensorflow_version
from ..utils.stat_models import pairwise_distances_no_broadcast
from ..utils.utility import check_parameter

# if tensorflow 2, import from tf directly
if _get_tensorflow_version() == 1:
    from keras.models import Model
    from keras.layers import Lambda, Input, Dense, Dropout
    from keras.regularizers import l2
    from keras.losses import mse
    from keras import backend as K
else:
    from tensorflow.keras.models import Model
    from tensorflow.keras.layers import Lambda, Input, Dense, Dropout
    from tensorflow.keras.regularizers import l2
    from tensorflow.keras.losses import mse
    from tensorflow.keras import backend as K


[docs] class VAE(BaseDetector): """ Variational auto encoder Encoder maps X onto a latent space Z Decoder samples Z from N(0,1) VAE_loss = Reconstruction_loss + KL_loss Reference See :cite:`kingma2013auto` Kingma, Diederik, Welling 'Auto-Encodeing Variational Bayes' https://arxiv.org/abs/1312.6114 for details. beta VAE In Loss, the emphasis is on KL_loss and capacity of a bottleneck: VAE_loss = Reconstruction_loss + gamma*KL_loss Reference See :cite:`burgess2018understanding` Burges et al 'Understanding disentangling in beta-VAE' https://arxiv.org/pdf/1804.03599.pdf for details. Parameters ---------- encoder_neurons : list, optional (default=[128, 64, 32]) The number of neurons per hidden layer in encoder. decoder_neurons : list, optional (default=[32, 64, 128]) The number of neurons per hidden layer in decoder. hidden_activation : str, optional (default='relu') Activation function to use for hidden layers. All hidden layers are forced to use the same type of activation. See https://keras.io/activations/ output_activation : str, optional (default='sigmoid') Activation function to use for output layer. See https://keras.io/activations/ loss : str or obj, optional (default=keras.losses.mean_squared_error String (name of objective function) or objective function. See https://keras.io/losses/ gamma : float, optional (default=1.0) Coefficient of beta VAE regime. Default is regular VAE. capacity : float, optional (default=0.0) Maximum capacity of a loss bottle neck. optimizer : str, optional (default='adam') String (name of optimizer) or optimizer instance. See https://keras.io/optimizers/ epochs : int, optional (default=100) Number of epochs to train the model. batch_size : int, optional (default=32) Number of samples per gradient update. dropout_rate : float in (0., 1), optional (default=0.2) The dropout to be used across all layers. l2_regularizer : float in (0., 1), optional (default=0.1) The regularization strength of activity_regularizer applied on each layer. By default, l2 regularizer is used. See https://keras.io/regularizers/ validation_size : float in (0., 1), optional (default=0.1) The percentage of data to be used for validation. preprocessing : bool, optional (default=True) If True, apply standardization on the data. verbose : int, optional (default=1) verbose mode. - 0 = silent - 1 = progress bar - 2 = one line per epoch. For verbose >= 1, model summary may be printed. random_state : random_state: int, RandomState instance or None, opti (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the r number generator; If None, the random number generator is the RandomState instance used by `np.random`. contamination : float in (0., 0.5), optional (default=0.1) The amount of contamination of the data set, i.e. the proportion of outliers in the data set. When fitting this is to define the threshold on the decision function. Attributes ---------- encoding_dim_ : int The number of neurons in the encoding layer. compression_rate_ : float The ratio between the original feature and the number of neurons in the encoding layer. model_ : Keras Object The underlying AutoEncoder in Keras. history_: Keras Object The AutoEncoder training history. decision_scores_ : numpy array of shape (n_samples,) The outlier scores of the training data. The higher, the more abnormal. Outliers tend to have higher scores. This value is available once the detector is fitted. threshold_ : float The threshold is based on ``contamination``. It is the ``n_samples * contamination`` most abnormal samples in ``decision_scores_``. The threshold is calculated for generating binary outlier labels. labels_ : int, either 0 or 1 The binary labels of the training data. 0 stands for inliers and 1 for outliers/anomalies. It is generated by applying ``threshold_`` on ``decision_scores_``. """ def __init__(self, encoder_neurons=None, decoder_neurons=None, latent_dim=2, hidden_activation='relu', output_activation='sigmoid', loss=mse, optimizer='adam', epochs=100, batch_size=32, dropout_rate=0.2, l2_regularizer=0.1, validation_size=0.1, preprocessing=True, verbose=1, random_state=None, contamination=0.1, gamma=1.0, capacity=0.0): super(VAE, self).__init__(contamination=contamination) self.encoder_neurons = encoder_neurons self.decoder_neurons = decoder_neurons self.hidden_activation = hidden_activation self.output_activation = output_activation self.loss = loss self.optimizer = optimizer self.epochs = epochs self.batch_size = batch_size self.dropout_rate = dropout_rate self.l2_regularizer = l2_regularizer self.validation_size = validation_size self.preprocessing = preprocessing self.verbose = verbose self.random_state = random_state self.latent_dim = latent_dim self.gamma = gamma self.capacity = capacity # default values if self.encoder_neurons is None: self.encoder_neurons = [128, 64, 32] if self.decoder_neurons is None: self.decoder_neurons = [32, 64, 128] self.encoder_neurons_ = self.encoder_neurons self.decoder_neurons_ = self.decoder_neurons check_parameter(dropout_rate, 0, 1, param_name='dropout_rate', include_left=True)
[docs] def sampling(self, args): """Reparametrisation by sampling from Gaussian, N(0,I) To sample from epsilon = Norm(0,I) instead of from likelihood Q(z|X) with latent variables z: z = z_mean + sqrt(var) * epsilon Parameters ---------- args : tensor Mean and log of variance of Q(z|X). Returns ------- z : tensor Sampled latent variable. """ z_mean, z_log = args batch = K.shape(z_mean)[0] # batch size dim = K.int_shape(z_mean)[1] # latent dimension epsilon = K.random_normal(shape=(batch, dim)) # mean=0, std=1.0 return z_mean + K.exp(0.5 * z_log) * epsilon
[docs] def vae_loss(self, inputs, outputs, z_mean, z_log): """ Loss = Recreation loss + Kullback-Leibler loss for probability function divergence (ELBO). gamma > 1 and capacity != 0 for beta-VAE """ reconstruction_loss = self.loss(inputs, outputs) reconstruction_loss *= self.n_features_ kl_loss = 1 + z_log - K.square(z_mean) - K.exp(z_log) kl_loss = -0.5 * K.sum(kl_loss, axis=-1) kl_loss = self.gamma * K.abs(kl_loss - self.capacity) return K.mean(reconstruction_loss + kl_loss)
def _build_model(self): """Build VAE = encoder + decoder + vae_loss""" # Build Encoder inputs = Input(shape=(self.n_features_,)) # Input layer layer = Dense(self.n_features_, activation=self.hidden_activation)( inputs) # Hidden layers for neurons in self.encoder_neurons: layer = Dense(neurons, activation=self.hidden_activation, activity_regularizer=l2(self.l2_regularizer))(layer) layer = Dropout(self.dropout_rate)(layer) # Create mu and sigma of latent variables z_mean = Dense(self.latent_dim)(layer) z_log = Dense(self.latent_dim)(layer) # Use parametrisation sampling z = Lambda(self.sampling, output_shape=(self.latent_dim,))( [z_mean, z_log]) # Instantiate encoder encoder = Model(inputs, [z_mean, z_log, z]) if self.verbose >= 1: encoder.summary() # Build Decoder latent_inputs = Input(shape=(self.latent_dim,)) # Latent input layer layer = Dense(self.latent_dim, activation=self.hidden_activation)( latent_inputs) # Hidden layers for neurons in self.decoder_neurons: layer = Dense(neurons, activation=self.hidden_activation)(layer) layer = Dropout(self.dropout_rate)(layer) # Output layer outputs = Dense(self.n_features_, activation=self.output_activation)( layer) # Instatiate decoder decoder = Model(latent_inputs, outputs) if self.verbose >= 1: decoder.summary() # Generate outputs outputs = decoder(encoder(inputs)[2]) # Instantiate VAE vae = Model(inputs, outputs) vae.add_loss(self.vae_loss(inputs, outputs, z_mean, z_log)) vae.compile(optimizer=self.optimizer) if self.verbose >= 1: vae.summary() return vae
[docs] def fit(self, X, y=None): """Fit detector. y is optional for unsupervised methods. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. y : numpy array of shape (n_samples,), optional (default=None) The ground truth of the input samples (labels). """ # validate inputs X and y (optional) X = check_array(X) self._set_n_classes(y) # Verify and construct the hidden units self.n_samples_, self.n_features_ = X.shape[0], X.shape[1] # Standardize data for better performance if self.preprocessing: self.scaler_ = StandardScaler() X_norm = self.scaler_.fit_transform(X) else: X_norm = np.copy(X) # Shuffle the data for validation as Keras do not shuffling for # Validation Split np.random.shuffle(X_norm) # Validate and complete the number of hidden neurons if np.min(self.encoder_neurons) > self.n_features_: raise ValueError("The number of neurons should not exceed " "the number of features") # Build VAE model & fit with X self.model_ = self._build_model() self.history_ = self.model_.fit(X_norm, epochs=self.epochs, batch_size=self.batch_size, shuffle=True, validation_split=self.validation_size, verbose=self.verbose).history # Predict on X itself and calculate the reconstruction error as # the outlier scores. Noted X_norm was shuffled has to recreate if self.preprocessing: X_norm = self.scaler_.transform(X) else: X_norm = np.copy(X) pred_scores = self.model_.predict(X_norm) self.decision_scores_ = pairwise_distances_no_broadcast(X_norm, pred_scores) self._process_decision_scores() return self
[docs] def decision_function(self, X): """Predict raw anomaly score of X using the fitted detector. The anomaly score of an input sample is computed based on different detector algorithms. For consistency, outliers are assigned with larger anomaly scores. Parameters ---------- X : numpy array of shape (n_samples, n_features) The training input samples. Sparse matrices are accepted only if they are supported by the base estimator. Returns ------- anomaly_scores : numpy array of shape (n_samples,) The anomaly score of the input samples. """ check_is_fitted(self, ['model_', 'history_']) X = check_array(X) if self.preprocessing: X_norm = self.scaler_.transform(X) else: X_norm = np.copy(X) # Predict on X and return the reconstruction errors pred_scores = self.model_.predict(X_norm) return pairwise_distances_no_broadcast(X_norm, pred_scores)