Source code for pyod.models.alad

# -*- coding: utf-8 -*-
"""Using Adversarially Learned Anomaly Detection
"""
# Author: Michiel Bongaerts (but not author of the ALAD method)

from __future__ import division
from __future__ import print_function

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted

from .base import BaseDetector
from .base_dl import _get_tensorflow_version
from ..utils.utility import check_parameter

# if tensorflow 2, import from tf directly
if _get_tensorflow_version() < 200:
    raise NotImplementedError('Model not implemented for Tensorflow version 1')
elif 200 <= _get_tensorflow_version() <= 209:
    import tensorflow as tf
    from tensorflow.keras.models import Model
    from tensorflow.keras.layers import Input, Dense, Dropout
    from tensorflow.keras.optimizers import Adam
else:
    import tensorflow as tf
    from tensorflow.keras.models import Model
    from tensorflow.keras.layers import Input, Dense, Dropout
    from tensorflow.keras.optimizers.legacy import Adam


[docs] class ALAD(BaseDetector): """Adversarially Learned Anomaly Detection (ALAD). Paper: https://arxiv.org/pdf/1812.02288.pdf See :cite:`zenati2018adversarially` for details. Parameters ---------- output_activation : str, optional (default=None) Activation function to use for output layers for encoder and dector. See https://keras.io/activations/ activation_hidden_disc : str, optional (default='tanh') Activation function to use for hidden layers in discrimators. See https://keras.io/activations/ activation_hidden_gen : str, optional (default='tanh') Activation function to use for hidden layers in encoder and decoder (i.e. generator). See https://keras.io/activations/ epochs : int, optional (default=500) Number of epochs to train the model. batch_size : int, optional (default=32) Number of samples per gradient update. dropout_rate : float in (0., 1), optional (default=0.2) The dropout to be used across all layers. dec_layers : list, optional (default=[5,10,25]) List that indicates the number of nodes per hidden layer for the d ecoder network. Thus, [10,10] indicates 2 hidden layers having each 10 nodes. enc_layers : list, optional (default=[25,10,5]) List that indicates the number of nodes per hidden layer for the encoder network. Thus, [10,10] indicates 2 hidden layers having each 10 nodes. disc_xx_layers : list, optional (default=[25,10,5]) List that indicates the number of nodes per hidden layer for discriminator_xx. Thus, [10,10] indicates 2 hidden layers having each 10 nodes. disc_zz_layers : list, optional (default=[25,10,5]) List that indicates the number of nodes per hidden layer for discriminator_zz. Thus, [10,10] indicates 2 hidden layers having each 10 nodes. disc_xz_layers : list, optional (default=[25,10,5]) List that indicates the number of nodes per hidden layer for discriminator_xz. Thus, [10,10] indicates 2 hidden layers having each 10 nodes. learning_rate_gen: float in (0., 1), optional (default=0.001) learning rate of training the encoder and decoder learning_rate_disc: float in (0., 1), optional (default=0.001) learning rate of training the discriminators add_recon_loss: bool optional (default=False) add an extra loss for encoder and decoder based on the reconstruction error lambda_recon_loss: float in (0., 1), optional (default=0.1) if ``add_recon_loss= True``, the reconstruction loss gets multiplied by ``lambda_recon_loss`` and added to the total loss for the generator (i.e. encoder and decoder). preprocessing : bool, optional (default=True) If True, apply standardization on the data. verbose : int, optional (default=1) Verbosity mode. - 0 = silent - 1 = progress bar contamination : float in (0., 0.5), optional (default=0.1) The amount of contamination of the data set, i.e. the proportion of outliers in the data set. When fitting this is used to define the threshold on the decision function. Attributes ---------- decision_scores_ : numpy array of shape (n_samples,) The outlier scores of the training data [0,1]. The higher, the more abnormal. Outliers tend to have higher scores. This value is available once the detector is fitted. threshold_ : float The threshold is based on ``contamination``. It is the ``n_samples * contamination`` most abnormal samples in ``decision_scores_``. The threshold is calculated for generating binary outlier labels. labels_ : int, either 0 or 1 The binary labels of the training data. 0 stands for inliers and 1 for outliers/anomalies. It is generated by applying ``threshold_`` on ``decision_scores_``. """ def __init__(self, activation_hidden_gen='tanh', activation_hidden_disc='tanh', output_activation=None, dropout_rate=0.2, latent_dim=2, dec_layers=[5, 10, 25], enc_layers=[25, 10, 5], disc_xx_layers=[25, 10, 5], disc_zz_layers=[25, 10, 5], disc_xz_layers=[25, 10, 5], learning_rate_gen=0.0001, learning_rate_disc=0.0001, add_recon_loss=False, lambda_recon_loss=0.1, epochs=200, verbose=0, preprocessing=False, add_disc_zz_loss=True, spectral_normalization=False, batch_size=32, contamination=0.1): super(ALAD, self).__init__(contamination=contamination) self.activation_hidden_disc = activation_hidden_disc self.activation_hidden_gen = activation_hidden_gen self.dropout_rate = dropout_rate self.latent_dim = latent_dim self.dec_layers = dec_layers self.enc_layers = enc_layers self.disc_xx_layers = disc_xx_layers self.disc_zz_layers = disc_zz_layers self.disc_xz_layers = disc_xz_layers self.add_recon_loss = add_recon_loss self.lambda_recon_loss = lambda_recon_loss self.add_disc_zz_loss = add_disc_zz_loss self.output_activation = output_activation self.contamination = contamination self.epochs = epochs self.learning_rate_gen = learning_rate_gen self.learning_rate_disc = learning_rate_disc self.preprocessing = preprocessing self.batch_size = batch_size self.verbose = verbose self.spectral_normalization = spectral_normalization if (self.spectral_normalization == True): try: global tfa import tensorflow_addons as tfa except ModuleNotFoundError: # Error handling print( 'tensorflow_addons not found, cannot use spectral normalization. Install tensorflow_addons first.') self.spectral_normalization = False check_parameter(dropout_rate, 0, 1, param_name='dropout_rate', include_left=True) def _build_model(self): #### Decoder ##### dec_in = Input(shape=(self.latent_dim,), name='I1') dec_1 = Dropout(self.dropout_rate)(dec_in) last_layer = dec_1 # Store all hidden layers in dict dec_hl_dict = {} for i, l_dim in enumerate(self.dec_layers): layer_name = 'hl_{}'.format(i) dec_hl_dict[layer_name] = Dropout(self.dropout_rate)( Dense(l_dim, activation=self.activation_hidden_gen)( last_layer)) last_layer = dec_hl_dict[layer_name] dec_out = Dense(self.n_features_, activation=self.output_activation)( last_layer) self.dec = Model(inputs=(dec_in), outputs=[dec_out]) self.hist_loss_dec = [] #### Encoder ##### enc_in = Input(shape=(self.n_features_,), name='I1') enc_1 = Dropout(self.dropout_rate)(enc_in) last_layer = enc_1 # Store all hidden layers in dict enc_hl_dict = {} for i, l_dim in enumerate(self.enc_layers): layer_name = 'hl_{}'.format(i) enc_hl_dict[layer_name] = Dropout(self.dropout_rate)( Dense(l_dim, activation=self.activation_hidden_gen)( last_layer)) last_layer = enc_hl_dict[layer_name] enc_out = Dense(self.latent_dim, activation=self.output_activation)( last_layer) self.enc = Model(inputs=(enc_in), outputs=[enc_out]) self.hist_loss_enc = [] #### Discriminator_xz ##### disc_xz_in_x = Input(shape=(self.n_features_,), name='I1') disc_xz_in_z = Input(shape=(self.latent_dim,), name='I2') disc_xz_in = tf.concat([disc_xz_in_x, disc_xz_in_z], axis=1) disc_xz_1 = Dropout(self.dropout_rate)(disc_xz_in) last_layer = disc_xz_1 # Store all hidden layers in dict disc_xz_hl_dict = {} for i, l_dim in enumerate(self.disc_xz_layers): layer_name = 'hl_{}'.format(i) if (self.spectral_normalization == True): disc_xz_hl_dict[layer_name] = Dropout(self.dropout_rate)( tfa.layers.SpectralNormalization( Dense(l_dim, activation=self.activation_hidden_disc))( last_layer)) else: disc_xz_hl_dict[layer_name] = Dropout(self.dropout_rate)( Dense(l_dim, activation=self.activation_hidden_disc)( last_layer)) last_layer = disc_xz_hl_dict[layer_name] disc_xz_out = Dense(1, activation='sigmoid')(last_layer) self.disc_xz = Model(inputs=(disc_xz_in_x, disc_xz_in_z), outputs=[disc_xz_out]) # self.hist_loss_disc_xz = [] #### Discriminator_xx ##### disc_xx_in_x = Input(shape=(self.n_features_,), name='I1') disc_xx_in_x_hat = Input(shape=(self.n_features_,), name='I2') disc_xx_in = tf.concat([disc_xx_in_x, disc_xx_in_x_hat], axis=1) disc_xx_1 = Dropout(self.dropout_rate, input_shape=(self.n_features_,))(disc_xx_in) last_layer = disc_xx_1 # Store all hidden layers in dict disc_xx_hl_dict = {} for i, l_dim in enumerate(self.disc_xx_layers): layer_name = 'hl_{}'.format(i) if (self.spectral_normalization == True): disc_xx_hl_dict[layer_name] = Dropout(self.dropout_rate)( tfa.layers.SpectralNormalization( Dense(l_dim, activation=self.activation_hidden_disc))( last_layer)) else: disc_xx_hl_dict[layer_name] = Dropout(self.dropout_rate)( Dense(l_dim, activation=self.activation_hidden_disc)( last_layer)) last_layer = disc_xx_hl_dict[layer_name] disc_xx_out = Dense(1, activation='sigmoid')(last_layer) self.disc_xx = Model(inputs=(disc_xx_in_x, disc_xx_in_x_hat), outputs=[disc_xx_out, last_layer]) # self.hist_loss_disc_xx = [] #### Discriminator_zz ##### disc_zz_in_z = Input(shape=(self.latent_dim,), name='I1') disc_zz_in_z_prime = Input(shape=(self.latent_dim,), name='I2') disc_zz_in = tf.concat([disc_zz_in_z, disc_zz_in_z_prime], axis=1) disc_zz_1 = Dropout(self.dropout_rate, input_shape=(self.n_features_,))(disc_zz_in) last_layer = disc_zz_1 # Store all hidden layers in dict disc_zz_hl_dict = {} for i, l_dim in enumerate(self.disc_zz_layers): layer_name = 'hl_{}'.format(i) if (self.spectral_normalization == True): disc_zz_hl_dict[layer_name] = Dropout(self.dropout_rate)( tfa.layers.SpectralNormalization( Dense(l_dim, activation=self.activation_hidden_disc))( last_layer)) else: disc_zz_hl_dict[layer_name] = Dropout(self.dropout_rate)( Dense(l_dim, activation=self.activation_hidden_disc)( last_layer)) last_layer = disc_zz_hl_dict[layer_name] disc_zz_out = Dense(1, activation='sigmoid')(last_layer) self.disc_zz = Model(inputs=(disc_zz_in_z, disc_zz_in_z_prime), outputs=[disc_zz_out]) # self.hist_loss_disc_zz = [] # Set optimizer opt_gen = Adam(learning_rate=self.learning_rate_gen) opt_disc = Adam(learning_rate=self.learning_rate_disc) self.dec.compile(optimizer=opt_gen) self.enc.compile(optimizer=opt_gen) self.disc_xz.compile(optimizer=opt_disc) self.disc_xx.compile(optimizer=opt_disc) self.disc_zz.compile(optimizer=opt_disc) self.hist_loss_disc = [] self.hist_loss_gen = []
[docs] def train_step(self, data): cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=False) x_real, z_real = data def get_losses(): y_true = tf.ones_like(x_real[:, [0]]) y_fake = tf.zeros_like(x_real[:, [0]]) # Generator x_gen = self.dec({'I1': z_real}, training=True) # Encoder z_gen = self.enc({'I1': x_real}, training=True) # Discriminatorxz out_truexz = self.disc_xz({'I1': x_real, 'I2': z_gen}, training=True) out_fakexz = self.disc_xz({'I1': x_gen, 'I2': z_real}, training=True) # Discriminatorzz if (self.add_disc_zz_loss == True): out_truezz = self.disc_zz({'I1': z_real, 'I2': z_real}, training=True) out_fakezz = self.disc_zz({'I1': z_real, 'I2': self.enc( {'I1': self.dec({'I1': z_real}, training=True)})}, training=True) # Discriminatorxx out_truexx, _ = self.disc_xx({'I1': x_real, 'I2': x_real}, training=True) # self.Dxx(x_real, x_real) out_fakexx, _ = self.disc_xx({'I1': x_real, 'I2': self.dec( {'I1': self.enc({'I1': x_real}, training=True)})}, training=True) # Losses for discriminators loss_dxz = cross_entropy(y_true, out_truexz) + cross_entropy( y_fake, out_fakexz) loss_dxx = cross_entropy(y_true, out_truexx) + cross_entropy( y_fake, out_fakexx) if (self.add_disc_zz_loss == True): loss_dzz = cross_entropy(y_true, out_truezz) + cross_entropy( y_fake, out_fakezz) loss_disc = loss_dxz + loss_dzz + loss_dxx else: loss_disc = loss_dxz + loss_dxx # Losses for generator loss_gexz = cross_entropy(y_true, out_fakexz) + cross_entropy( y_fake, out_truexz) loss_gexx = cross_entropy(y_true, out_fakexx) + cross_entropy( y_fake, out_truexx) if (self.add_disc_zz_loss == True): loss_gezz = cross_entropy(y_true, out_fakezz) + cross_entropy( y_fake, out_truezz) cycle_consistency = loss_gezz + loss_gexx loss_gen = loss_gexz + cycle_consistency else: cycle_consistency = loss_gexx loss_gen = loss_gexz + cycle_consistency if (self.add_recon_loss == True): # Extra recon loss x_recon = self.dec( {'I1': self.enc({'I1': x_real}, training=True)}) loss_recon = tf.reduce_mean((x_real - x_recon) ** 2) loss_gen += loss_recon * self.lambda_recon_loss return loss_disc, loss_gen with tf.GradientTape() as enc_tape, tf.GradientTape() as dec_tape, tf.GradientTape() as disc_xx_tape, tf.GradientTape() as disc_xz_tape, tf.GradientTape() as disc_zz_tape: loss_disc, loss_gen = get_losses() self.hist_loss_disc.append(np.float64(loss_disc.numpy())) self.hist_loss_gen.append(np.float64(loss_gen.numpy())) gradients_dec = dec_tape.gradient(loss_gen, self.dec.trainable_variables) self.dec.optimizer.apply_gradients( zip(gradients_dec, self.dec.trainable_variables)) gradients_enc = enc_tape.gradient(loss_gen, self.enc.trainable_variables) self.enc.optimizer.apply_gradients( zip(gradients_enc, self.enc.trainable_variables)) gradients_disc_xx = disc_xx_tape.gradient(loss_disc, self.disc_xx.trainable_variables) self.disc_xx.optimizer.apply_gradients( zip(gradients_disc_xx, self.disc_xx.trainable_variables)) if (self.add_disc_zz_loss == True): gradients_disc_zz = disc_zz_tape.gradient(loss_disc, self.disc_zz.trainable_variables) self.disc_zz.optimizer.apply_gradients( zip(gradients_disc_zz, self.disc_zz.trainable_variables)) gradients_disc_xz = disc_xz_tape.gradient(loss_disc, self.disc_xz.trainable_variables) self.disc_xz.optimizer.apply_gradients( zip(gradients_disc_xz, self.disc_xz.trainable_variables))
[docs] def plot_learning_curves(self, start_ind=0, window_smoothening=10): fig = plt.figure(figsize=(12, 5)) l_gen = pd.Series(self.hist_loss_gen[start_ind:]).rolling( window_smoothening).mean() l_disc = pd.Series(self.hist_loss_disc[start_ind:]).rolling( window_smoothening).mean() ax = fig.add_subplot(1, 2, 1) ax.plot(range(len(l_gen)), l_gen, ) ax.set_title('Generator') ax.set_ylabel('Loss') ax.set_xlabel('Iter') ax = fig.add_subplot(1, 2, 2) ax.plot(range(len(l_disc)), l_disc) ax.set_title('Discriminator(s)') ax.set_ylabel('Loss') ax.set_xlabel('Iter') plt.show()
[docs] def fit(self, X, y=None, noise_std=0.1): """Fit detector. y is ignored in unsupervised methods. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Fitted estimator. """ # validate inputs X and y (optional) X = check_array(X) self._set_n_classes(y) # Get number of sampels and features from train set self.n_samples_, self.n_features_ = X.shape[0], X.shape[1] self._build_model() # Apply data scaling or not if self.preprocessing: self.scaler_ = StandardScaler() X_norm = self.scaler_.fit_transform(X) else: X_norm = np.copy(X) for n in range(self.epochs): if ((n % 50 == 0) and (n != 0) and (self.verbose == 1)): print('Train iter:{}'.format(n)) # Shuffle train np.random.shuffle(X_norm) X_train_sel = X_norm[0: min(self.batch_size, self.n_samples_), :] latent_noise = np.random.normal(0, 1, ( X_train_sel.shape[0], self.latent_dim)) X_train_sel += np.random.normal(0, noise_std, size=X_train_sel.shape) self.train_step( (np.float32(X_train_sel), np.float32(latent_noise))) # Predict on X itself and calculate the the outlier scores. # Note, X_norm was shuffled and needs to be recreated if self.preprocessing: X_norm = self.scaler_.transform(X) else: X_norm = np.copy(X) pred_scores = self.get_outlier_scores(X_norm) self.decision_scores_ = pred_scores self._process_decision_scores() return self
[docs] def train_more(self, X, epochs=100, noise_std=0.1): """This function allows the researcher to perform extra training instead of the fixed number determined by the fit() function. """ # fit() should have been called first check_is_fitted(self, ['decision_scores_']) # Apply data scaling or not if self.preprocessing: X_norm = self.scaler_.transform(X) else: X_norm = np.copy(X) for n in range(epochs): if ((n % 50 == 0) and (n != 0) and (self.verbose == 1)): print('Train iter:{}'.format(n)) # Shuffle train np.random.shuffle(X_norm) X_train_sel = X_norm[0: min(self.batch_size, self.n_samples_), :] latent_noise = np.random.normal(0, 1, ( X_train_sel.shape[0], self.latent_dim)) X_train_sel += np.random.normal(0, noise_std, size=X_train_sel.shape) self.train_step( (np.float32(X_train_sel), np.float32(latent_noise))) # Predict on X itself and calculate the the outlier scores. # Note, X_norm was shuffled and needs to be recreated if self.preprocessing: X_norm = self.scaler_.transform(X) else: X_norm = np.copy(X) pred_scores = self.get_outlier_scores(X_norm) self.decision_scores_ = pred_scores self._process_decision_scores() return self
[docs] def get_outlier_scores(self, X_norm): X_enc = self.enc({'I1': X_norm}).numpy() X_enc_gen = self.dec({'I1': X_enc}).numpy() _, act_layer_xx = self.disc_xx({'I1': X_norm, 'I2': X_norm}, training=False) act_layer_xx = act_layer_xx.numpy() _, act_layer_xx_enc_gen = self.disc_xx({'I1': X_norm, 'I2': X_enc_gen}, training=False) act_layer_xx_enc_gen = act_layer_xx_enc_gen.numpy() outlier_scores = np.mean( np.abs((act_layer_xx - act_layer_xx_enc_gen) ** 2), axis=1) return outlier_scores
[docs] def decision_function(self, X): """Predict raw anomaly score of X using the fitted detector. The anomaly score of an input sample is computed based on different detector algorithms. For consistency, outliers are assigned with larger anomaly scores. Parameters ---------- X : numpy array of shape (n_samples, n_features) The training input samples. Sparse matrices are accepted only if they are supported by the base estimator. Returns ------- anomaly_scores : numpy array of shape (n_samples,) The anomaly score of the input samples. """ check_is_fitted(self, ['decision_scores_']) X = check_array(X) if self.preprocessing: X_norm = self.scaler_.transform(X) else: X_norm = np.copy(X) # Predict on X pred_scores = self.get_outlier_scores(X_norm) return pred_scores